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Abstract: As we move toward increasing the grid integration of large-scale wind farms (WFs), reliable
monitoring, protection, and control are needed to ensure grid stability. WFs are considered to be
large and complex cyber physical systems owing to coupling between the electric power system and
information and communication technologies (ICT). In this study, we proposed a framework for a
cyber physical wind energy system (CPWES), which consists of four layers: a WF power system
layer, data acquisition and monitoring layer, communication network layer, and application layer. We
performed detailed network modeling for the WF system, including the wind turbines, meteorological
mast (met-mast), and substation based on IEC 61400-25 and IEC 61850 standards. Network parameters
and configuration were based on a real WF (Korean Southwest offshore project). The simulation
results of the end-to-end delay were obtained for different WF applications, and they were compared
with the timing requirements of the IEC 1646 standard. The proposed architecture represents a
reference model for WF systems, and it can be used to enable the design of future CPWESs.

Keywords: wind farm; communication network; cyber physical wind energy system; grid integration;
IEC 61850; IEC 61400-25

1. Introduction

There is a growing interest in increasing the penetration rate of renewable energies, such as
wind power, solar energy, and biomass. Among them, great attention has been given to wind energy,
and several large-scale wind farm (WF) projects are scheduled to be constructed in the near future.
In South Korea, the cumulative installed wind power was about 610 MW and 835 MW by the end of
2014 and 2015, respectively [1]. In September 2014, the Korean government announced a long-term
plan for new and renewable energies, with a target of obtaining 5.0% of the total primary energy
supply from renewable energies by 2020, and 11.0% by 2035. Wind power will supply and contribute
about 18.2% of the total power supplied by new and renewable energies by 2035 [2]. The planned WF
projects include Southwest phase 1, Tamra, Hanlim, Daejeong, North-East, Shinchong, and Quiduck.
The complete list of WF projects is available on the Korea wind power industry association (KWEIA)
website, including site location, total capacity, manufacturer, and number of turbines [3].

As an increasing number of WFs are integrated into the power grid, communication infrastructure
will play an important role in enabling the real-time operation, monitoring, and control of both wind
turbines and the electric power grids to ensure grid stability [4]. Communication infrastructure in WF
is considered as an example of an industrial network that requires special consideration in network
design owing to the following reasons [5–13]: (1) WFs are built in remote locations (onshore/offshore)
where abundant wind resources are available. The remote sites lack established communication
infrastructure or cellular coverage; (2) access to WF is difficult, especially in the case of offshore
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sites where the only means of access is by boat or helicopter. Furthermore, weather conditions may
postpone/prevent access to WF for an unspecified period. Therefore, remote monitoring and control
are highly required; (3) as advancements in the wind turbine industry enable wind turbines to migrate
from shallow water to deep water with taller towers and blades, recent studies show the increase
in the failure rate of large wind turbines, which impacts the availability of wind turbines and their
operation and maintenance costs [14]. Therefore, condition monitoring systems (CMS), structure
health monitoring (SHM), and supervisory control and data acquisition unit (SCADA) systems are
used for real-time monitoring; (4) the monitoring scope of large-scale WFs has been expanded to
cover the operation status of wind turbines, generated power, meteorological masts (met-mast), and
substations. Therefore, a considerable amount of data needs to be transferred between WFs and their
control centers, which will increase the burden on the communication infrastructure.

The main components of a WF are wind turbines, electric systems, a substation, and met-masts.
Communication infrastructure is used to connect WF components together using wired/wireless
technologies. Owing to coupling between the physical system and the cyber communication network,
a WF is considered to be a cyber physical system. Considerable research studies and investigations have
been conducted to study the WF electric power system. However, information on the corresponding
communication networks of the proposed models is limited. Furthermore, few research studies have
been carried out to investigate the SCADA system and the underlying communication infrastructure.
Moreover, it is difficult to find detailed information about how to design the communication network
for a wind energy system, as the designs are the proprietary information of each manufacturer. The only
available published information consists of outline descriptions of the communication infrastructure
of a number of real WF projects [4,15–17]. The extent of the research on communication infrastructure
and its role in supporting the grid integration of large-scale WFs is insufficient.

In this study, we propose a framework for cyber physical wind energy systems (CPWESs), which
consists of four layers: a WF power system layer, data acquisition and monitoring layer, communication
network layer, and application layer. We specified and explained the communication architecture
of a wind turbine, met-mast, substation, and control center. We modeled the data transmission of
the monitoring and protection systems in wind turbines, a met-mast, and a substation based on
IEC 61400-25 and IEC 61850 standards. We considered an actual WF (Southwest offshore project,
South Korea) as a case study to evaluate the network topology and configuration. We developed
a network simulation platform for the performance evaluation of the proposed architecture. The
proposed framework contributes by providing a reference architecture model that can be used for the
design and implementation of future CPWESs.

The remainder of this paper is organized as follows. Section 2 presents the proposed cyber
physical wind energy system. Section 3 explains WF modeling and assumptions. Section 4 discusses
and analyzes the simulation results. Finally, Section 5 concludes and gives direction for future work.

2. Cyber Physical Wind Energy System

The CPWES is considered to be a large and complex system, as it comprises multiple
heterogeneous domains that interact with each other. Figure 1 shows the proposed CPWES, which
consists of four layers: a WF power system layer, data acquisition and monitoring layer, communication
network layer, and application layer.

2.1. WF Power System Layer

This layer represents the WF electric power system, which is defined as a group of wind turbines
connected together and tied to the utility through a system of transformers, transmission lines, and
substations. A typical wind turbine consists of a wind turbine generator, step-up transformer, and a
circuit breaker. The step-up transformer is used to step-up the generation voltage of each wind turbine.
Wind turbines are divided into groups, and each group is connected to the collector bus through a
circuit breaker. A high-voltage transformer is used to step-up the voltage to the transmission level.
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2.2. Data Acquisition and Monitoring Layer 

The data acquisition layer includes sensor nodes and measurement devices, which are the basic 
data sources. Sensor nodes and measurement devices are connected to different elements of the WF 
(inside wind turbine, at the met-mast, etc.), and their main function is to report measurements, such 
as temperature, speed, voltage, current, and pressure. The CMS of a wind turbine continuously 
collects a large volume of data signals in real time. Based on data collected from CMS, sensors, and 
other devices, the wind turbine controller (WTC) performs the control operation for the wind turbine 
(different operation modes). 

 
Figure 1. Proposed architecture of the cyber physical wind energy system. SCADA: supervisory 
control and data acquisition; CCTV: closed-circuit television; VOIP: voice over internet protocol; IED: 
intelligent electronic device; WTG: wind turbine generator; WTC: wind turbine controller; HV: high 
voltage; Met. Mast: meteorological mast. 

2.3. Communication Network Layer 

The communication infrastructure provides the connection between WF elements, and it is 
divided into two parts: the communication network inside the wind turbine (turbine area network, 
TAN) and between wind turbines, and the control center (farm area network, FAN). Inside a wind 
turbine are different communication protocols, such as the field bus, industrial ethernet protocols, 
and control area network (CAN). The architecture of the WF communication network is switch-
based, consisting of ethernet switches and communication links in every wind turbine. The network 
configuration is based on point-to-point communication and a local area network (LAN). In order to 
link the WF network with a remote control center, different wide area network (WAN) technologies, 
either wired or wireless, could be configured, such as optical fiber cables, microwaves, and satellites. 

Figure 1. Proposed architecture of the cyber physical wind energy system. SCADA: supervisory
control and data acquisition; CCTV: closed-circuit television; VOIP: voice over internet protocol; IED:
intelligent electronic device; WTG: wind turbine generator; WTC: wind turbine controller; HV: high
voltage; Met. Mast: meteorological mast.

2.2. Data Acquisition and Monitoring Layer

The data acquisition layer includes sensor nodes and measurement devices, which are the basic
data sources. Sensor nodes and measurement devices are connected to different elements of the WF
(inside wind turbine, at the met-mast, etc.), and their main function is to report measurements, such as
temperature, speed, voltage, current, and pressure. The CMS of a wind turbine continuously collects a
large volume of data signals in real time. Based on data collected from CMS, sensors, and other devices,
the wind turbine controller (WTC) performs the control operation for the wind turbine (different
operation modes).

2.3. Communication Network Layer

The communication infrastructure provides the connection between WF elements, and it is divided
into two parts: the communication network inside the wind turbine (turbine area network, TAN) and
between wind turbines, and the control center (farm area network, FAN). Inside a wind turbine are
different communication protocols, such as the field bus, industrial ethernet protocols, and control area
network (CAN). The architecture of the WF communication network is switch-based, consisting of
ethernet switches and communication links in every wind turbine. The network configuration is based
on point-to-point communication and a local area network (LAN). In order to link the WF network
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with a remote control center, different wide area network (WAN) technologies, either wired or wireless,
could be configured, such as optical fiber cables, microwaves, and satellites. Each WF has a dedicated
connection to a local control center for real-time monitoring and control. However, one control center
can remotely manage and control one or more WFs.

2.4. Application Layer

The SCADA systems are used for data acquisition, remote monitoring, real-time control, and data
recording. There are multiple applications covered by the SCADA systems in a WF. The three main
applications are as follows: the turbine SCADA system provides the connectivity among wind turbines
and enables remote monitoring and control for each wind turbine and their associated sub-systems,
the WF SCADA system connects all devices from all wind turbines, as well as the electric substation
together, and the security SCADA system provides the IP telephony services and video surveillance.
The SCADA system remotely collects the process information from WF components and stores it in
historical databases and servers (historical servers, metering server, meteorological server, etc.). Based
on the collected information, the control center executes appropriate actions.

3. CPWES Modeling and Assumption

In this study, the Southwest offshore wind farm located in South Korea was considered as a case
study. We aimed to design the communication infrastructure for phase 1 of the project, which consists
of 20 wind turbines with a total capacity of 60 MW, as shown in Figure 2. The output voltage of each
turbine was 690 V. The voltage is stepped-up to the collector bus with a typical voltage of 34.5 kV. All
turbines were connected to an offshore substation. The spacing between turbines was about 800 m
(along the rows and between the rows). The longest cable length was about 1.2 km between turbine
No. 3 and the offshore platform, while the shortest cable length was about 524 m between turbine
No. 1 and the offshore platform [18]. The electric topology configuration consisted of three feeders,
one bus, and one HV transformer. We assumed that the communication network topology followed
the WF electric topology, where the optical fiber cables are integrated with the submarine cables. The
WF communication architecture is shown in Figure 3.
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In order to model the wind turbine subsystems, we considered the IEC 61400-25 standard, which 
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of wind power plants. We assumed that a wind turbine consists of 10 logical nodes (LNs): WROT, 
WTEM, WGEN, WCNV, WNAC, WYAW, WTOW, WTRF, WMET and WFOU, as shown in Equation (1). 
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(high speed). In our model, the total number of sensor nodes defined inside a wind turbine was 108 
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3.1. Traffic Model for Wind Turbine Based on IEC 61400-25

In order to model the wind turbine subsystems, we considered the IEC 61400-25 standard, which
is an adaption of IEC 61850 [19]. IEC 61400-25 provides information for the monitoring and control
of wind power plants. We assumed that a wind turbine consists of 10 logical nodes (LNs): WROT,
WTEM, WGEN, WCNV, WNAC, WYAW, WTOW, WTRF, WMET and WFOU, as shown in Equation (1).
Each LN represents a wind turbine sub-system, as given in Table 1.

WTLN = {WROT, WTEM, WGEN, WCNV, WNAC, WYAW, WTOW, WTRF, WMET, WFOU}, (1)

Different types of sensor nodes and measurement devices were connected to different turbine
parts to measure different parameters, such as voltage (V), current (A), wind speed (WdSpd), wind
direction (WdDir), temperature (Tmp), Humidity (Hum), displacement (Disp), and pressure (Pres).
Equation (2) defines types of sensor nodes (SNTYPE) inside a wind turbine sub-system.

SNTYPE ⊆ {V, I, WdSpd, WdDir, Tmp, Hum, Disp, Pres, . . .}, (2)

Each sensor node (SNi) was identified by a senor identification ID (SNID), sensor type (SNTYPE),
and the physical location inside the wind turbine (WTLN), as given in Equation (3).

SNi = {WTLN , SNID, SNTYPE}, (3)
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Regarding the data acquisition and monitoring layer, the authors in Ref. [20] designed a data
acquisition system to be installed on a real wind turbine. The total number of sensor nodes was about
29. The sensor nodes were divided into two groups with sampling rates: 50 Hz (low speed) and
20 kHz (high speed). In our model, the total number of sensor nodes defined inside a wind turbine was
108 [21]. Figure 4 shows a schematic diagram of the cyber physical model for a wind turbine system
where seven LNs are located at the turbine nacelle and three LNs are in the bottom of the tower. Two
data collection units were considered for aggregating the traffic from different turbine subsystems.

Table 1. Wind turbine logical nodes [18].

LN Description LN Description

WROT Wind turbine rotor information WNAC Wind turbine nacelle information
WTRM Wind turbine transmission information WYAW Wind turbine yawing information

WTGEN Wind turbine generator information WTOW Wind turbine tower information
WCNV Wind turbine converter information WFOU Wind turbine foundation information
WTRF Wind turbine transformer information WMET Wind power plant meteorological information
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To determine the amount of data generated from each sensor node (data rate, SNDR), we defined
the sample size (NB), the sampling rate (FS), and the number of channels (NC), as shown in Equation (4).

SNDR = NB × FS ×NC, (4)
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Given the displacement sensor as an example, the sensor generates 10 samples/s and the number
of channels required for the measuring of data is 2 channels. The total amount of data is 320 bits/s,
considering a sample size of 16 bits. Table 2 shows how to calculate the measuring requirement for
different sensor nodes. We calculated the sensing data for all sensor nodes inside a wind turbine
(108 sensor nodes), and Table 3 shows the traffic configuration at each wind turbine subsystem.

Table 2. Measuring requirement for sensor nodes.

Sensor Type Sampling Frequency Sample Size Number of Channels Data Rate

Temperature 1 Hz 16 bits 1 2 bytes/s
Wind Speed 1 Hz 16 bits 1 2 bytes/s

Displacement 10 Hz 16 bits 2 40 bytes/s
Vibration 200 Hz 16 bits 3 1200 bytes/s
Voltage 2048 Hz 16 bits 3 12,288 bytes/s

Table 3. Traffic configuration for a wind turbine.

LN # Sensors Data Rate LN # Sensors Data Rate

WROT 14 642 bytes/s WNAC 12 112 bytes/s
WTRM 18 2828 bytes/s WYAW 7 220 bytes/s

WTGEN 14 73,764 bytes/s WTOW 4 8 bytes/s
WCNV 14 74,060 bytes/s WFOU 6 1434 bytes/s
WTRF 12 73,740 bytes/s WMET 7 228 bytes/s

3.2. Traffic Model for an Offshore Substation Based on IEC 61850

In this work, a WF is divided into different protection zones: the wind turbine zone, collector
feeder zone, collector bus zone, and high-voltage transformer zone. Each zone has one or more
protection devices associated with it, such as a wind turbine protection relay, step-up transformer
protection relay, feeder protection relay, bus protection relay, and distance relay for the transmission
line [22]. We considered three types of IEDs: a breaker IED, merging unit (MU) IED, and protection
and control (P&C) IED [23–26]. Based on IEC 61850, the function of a MU IED is to acquire the voltage
and current signals from the field CT and PT. The function of a CB IED is to monitor the state and
control the condition of the circuit breaker. Furthermore, it receives control signals from the P&C
IEDs and updates the status change to the protection IEDs. The P&C IED is a universal device that
integrates protection and control functionalities and operates at the bay level in the substation.

All acquired signals from different zones were transmitted to the central protection and control
(CPC) system on the offshore substation using point-to-point fiber communication. We considered one
CPC system, which is responsible for all protection and control devices in the WF, as shown in Figure 5.
In addition, each wind turbine generator (WTG) was configured with a merging unit to acquire
current, voltage, and breaker signals for wind turbine protection. Data packets were transmitted over
a communication network to a central relaying unit (CRU) for P&C functions of the whole WF. For
MU-IEDs, we assumed that the sampling frequency of the voltage and current data was 6400 Hz for a
50 Hz power system, and each piece of sampling data was represented by 2 bytes [27]. Considering
the 3-phase voltage and current measurement, the MU-IEDs send updated values of 76,800 bytes/s to
the P&C server at the local control center [25]. Moreover, the CB-IED sends a status value of 16 bytes/s
to the P&C server. The details of the process level, bay level, and station level are as follows:

• Process Level: The primary equipment includes merging units (MUs), actuators, and I/O devices.
• Bay Level: The secondary equipment includes different IEDs and protection relays.
• Station Level: It is located on the offshore platform and includes a central protection and control

unit, remote terminal units (RTU), and a human machine interface (HMI).
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level, and the top of the met-mast was about 97 m. Anemometers were installed at 97 m, 96 m, 86 m, 
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Figure 5. Schematic diagram of the cyber physical model for the wind farm substation.

The communication network was constructed based on ethernet-based architecture. The offshore
substation consisted of three feeders, one bus, and one transformer. Protection devices at wind turbines,
feeders, and bus were modeled as a subnet consisting of one CB-IED, one MU-IED, one P&C-IED,
and one ethernet switch. The step-up transformer was modeled as a subnet consisting of one CB-IED,
one MU-IED, two P&C IED, and an ethernet switch. Table 4 shows the IEDs configuration. The
traffic configuration and data flow for the CB-IED and MU-IED considered in our model are given
in Table 5. IEDs and relays were connected through a 100 Mbps ethernet-based architecture. At the
station level, there were the following: a station PC, a protection and control server, ethernet switches,
and communication links.

Table 4. IEDs configuration in the wind farm substation. IED: intelligent electronic device.

Zone CB IED MU IED P&C IED

Wind Turbine 1 1 1
Collector Feeder 1 1 1

Collector Bus 1 1 1
Substation Transformer 2 1 1

Table 5. Traffic configuration for IEDs.

Zone Measurement From To

CB IED Breaker Status CB IED Station Server
MU IED Sampled 3-phase V, I message MU IED Station Server
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3.3. Traffic Model for Meteorological Mast

We considered a met-mast to measure the wind condition in the WF area. Based on Reference [28],
we defined the number, types, and locations of the senor nodes and measuring instruments installed at
the met-mast, as shown in Figure 6. The platform height was 10 m with respect to the mean sea level,
and the top of the met-mast was about 97 m. Anemometers were installed at 97 m, 96 m, 86 m, 86 m,
76 m, 66 m, 56 m, 46 m and 26 m. Wind vanes were installed at 96 m, 76 m, 56 m and 46 m. Barometers
and temperature and humidity sensors were installed at 94 m and 13 m. The details of the sensor types
and their locations at the met-mast are shown in Table 6. The acoustic doppler current profile (ADCP)
is used to measure the current direction and velocity at sea level.Appl. Sci. 2017, 7, 1034 9 of 19 
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Humidity 93 m 1 Hz 2 bytes/s Anemometer 26 m 3 Hz 6 bytes/s

Pressure Sensor 93 m 100 Hz 200 bytes/s Humidity 14 m 1 Hz 2 bytes/s
Anemometer 86 m 3 Hz 6 bytes/s Temperature 14 m 1 Hz 2 bytes/s
Anemometer 76 m 3 Hz 6 bytes/s Pressure Sensor 14 m 100 Hz 200 bytes/s
Wind Vane 76 m 3 Hz 6 bytes/s Rain Sensor 10 m 4 Hz 8 bytes/s

Anemometer 66 m 3 Hz 6 bytes/s ADCP Foundation - 150 bytes/s

3.4. Wind Farm Timing Requirements

In a power system, it is important to meet the latency requirement for different real-time
monitoring and protection applications. Therefore, the WF communication network should ensure
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the end-to-end delay for data transmission between wind turbines, the met-mast, the substation, and
the control center. The IEC 61400-25 standard does not provide any specific timing requirements for
the WF. In this study, we considered the latency requirement based on the electric power system.
Table 7 shows the communication timing requirements for electric substation automation based on
IEEE 1646 [29]. We mapped WF monitoring and control information as follows: protection information
from IEDs were mapped for protection information, analogue measurement and status information
were mapped for monitoring and control information, and meteorological data from the met-mast
were mapped for operation and maintenance.

Table 7. Wind farm communication requirements based on the IEEE 1646 standard.

Information Types Delay Requirements

Protection Information (high speed) 4 ms
Analogue Measurement and Status Information 16 ms

Meteorological data 1 s
Audio and Video data stream 1 s

Image files 10 s

4. Simulation Results

The WF communication architecture is modeled using the OPNET Modeler [30], as shown in
Figure 3. The proposed communication architecture for the Southwest WF consists of 22 subnetworks
(20 wind turbines, one met-mast, and one offshore substation) [31]. Upstream data from WF subsystems
are transmitted to the local control center at the offshore substation. We simulated different scenarios
for WF monitoring, protection, and control, as shown in Table 8. The details of simulation cases are
as follows:

• Standalone wind turbine: includes data transmission of the condition monitoring system during
different operation modes.

• Wind farm: consists of 20 wind turbines configured in a cascade architecture.
• Met-mast: includes data transmission of sensors and measurement devices installed at

the met-mast.
• Substation: consists of protection and control devices (IEDs) at wind turbines, feeders, and

offshore substation.

Table 8. Summary of simulation cases.

Scale Level Options

1 Standalone Wind Turbine 10 Mb/s, 100 Mb/s
2 Wind Farm 100 Mb/s, 1 Gb/s
3 Met-Mast 10 Mb/s, 100 Mb/s
4 Substation 10 Mb/s, 100 Mb/s, 1 Gb/s

4.1. Standalone Wind Turbine Results

We considered four operation modes for a wind turbine, which are idle, start-up, power
generation, and shutdown, as shown in Figure 7. Based on wind conditions, the WTC determines the
turbine operation mode [8]. We assumed that the control center operator turned on a wind turbine for
operation. The WTC first checked the condition of the wind turbine. If no faults were detected in the
wind turbine system, the WTC activated the operation in the idle mode. During the idle mode, if the
average wind speed was greater than the cut-in wind speed for a certain time, the WTC activated the
start-up operation mode. During the power production mode, the WTC adjusted the blades’ pitch
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angle and position of the nacelle in order to optimize the turbine operation. In case of higher wind
speeds, which were greater than the cut-off, the WTC activated the shutdown mode.Appl. Sci. 2017, 7, 1034 11 of 19 
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We classified the sensor nodes inside the wind turbine into four different categories: mechanical
measurement (rotor speed, pitch angle, displacement, vibration, etc.), electrical measurements (voltage,
current, power, frequency, etc.), meteorological data (wind speed, wind direction, temperature,
humidity, etc.), and foundation measurements, as shown in Table 9. Based on the turbine operation
mode, the amount of monitoring data forwarded to the WTC was different. This classification meant
that some of the sensor nodes were continuously working, while other sensor nodes were generating
the monitoring data based on the turbine operation mode.

Table 9. Classification of data types based on different operation modes.

Data Type Idle Mode Operation Mode Shutdown Mode

Status
√ √

X
Mechanical

√ √
X

Electrical X
√

X
Meteorological

√ √
X

Foundation
√ √

X

The OPNET Modeler was used to simulate data transmission of condition monitoring system for
a wind turbine during three operation modes (shutdown, idle, and operation). The nacelle dimension
was configured as 12 m × 4 m. The total number of monitoring parameters and sensors was 108. The
height of the tower was configured as 85 m (distance between DCU and main ethernet switch). Based
on the IEC 61400-25 standard, different profiles were defined, configured, and assigned to each LN.
The simulation time was 20 min.

Figure 8a shows the total received traffic at the WTC for different operation modes. The maximum
received traffic was about 227,036 bytes/s (225,544 AM, 58 SI, and 1434 FOU) during turbine operation,
while the received traffic was about 5808 bytes/s during the idle mode. The difference was due to
the sensing data of the electric measurement (voltage, current, power, power factor and frequency),
which were about 221,228 bytes/s. No traffic was received at the WTC while the turbine was in the
shutdown mode.

Figure 8b shows the end-to-end delay inside the wind turbine between sensor nodes and the
WTC). The link capacities inside the wind turbine were configured with 10 Mbps and 100 Mbps.
During the power production mode, the end-to-end delay was about 0.098 ms and 1.1 ms using link
capacities of 10 Mbps and 100 Mbps, respectively. The received traffic from the pitch angel sensor, wind
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speed sensor, and tilt sensor were 18 bytes/s, 36 bytes/s, and 40 bytes/s, respectively, as shown in
Figure 9a. The measurements were received at the WTC just after the control center operator activated
the wind turbine for operation at t = 300 s. For the electric measurement, the received traffic for
the current and voltage were 73,728 bytes/s and 147,456 bytes/s, respectively. Note that the electric
measurements were transmitted to the WTC at t = 420 s, and no data was received during the idle
mode, as shown in Figure 9b.
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In the future, wind turbines will integrate more and more sensor nodes and monitoring devices.
This will require the communication network to support even higher bandwidth. We studied the
end-to-end delay for the case where the number of sensor nodes inside the wind turbine is duplicated
two-times (case2×) and three-times (case3×). The results in Figure 10 shows the received traffic and
the end-to-end delay at the WTC during different operation modes. The end-to-end delay increased
from 1.1 ms (base case with 108 sensor nodes) to 3.08 ms for case3×. The results of the ETE delay were
proportional to the network traffic and number of sensor nodes inside the wind turbine, as shown in
Table 10.
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Table 10. ETE delay inside WTs with different numbers of sensor nodes.

Case # Sensor Nodes Idle Mode Operation Mode

Case1× 108 0.53 ms 1.1 ms
Case2× 216 0.65 ms 1.77 ms
Case3× 324 0.69 ms 3.08 ms

4.2. Wind Farm Results

We configured the WF communication network based on the data from real large-scale WF
projects (Greater Gabbard WF in UK [16], Horn Rev WF in Denmark [15], and Yeung Heung in
South Korea [17]). The network topology was configured as cascaded architecture. A main ethernet
switch was located on the offshore platform. Dedicated optical fibers were connected between the
main ethernet switch and the nearest wind turbines. The connectivity between turbines was provided
through the connection between ethernet switches installed at the base of each turbine.

Figure 11 shows the total traffic received at the control center (SCADA server). The traffic
received for analogue measurements, status information, foundation measurements, and protection
information was 4,510,880 bytes/s (225,544 × 20), 1160 bytes/s (58 × 20), 28,680 bytes/s (1434 × 20),
and 1,536,320 bytes/s (76,816 × 20), respectively. Figure 12 shows the average ETE delay of real-time
monitoring data for all wind turbine applications. The average ETE delay was about 7.83 ms and
0.78 ms for link capacities of 100 Mbps and 1 Gbps, respectively. For the 20 wind turbines in the WF,
Table 11 shows the maximum and minimum ETE delays for SCADA, MU-IED, and CB-ID between the
wind turbines and the control center.

Table 11. Simulation results of the ETE delay from the wind turbine zone to the control center.

Wind Turbine Zone Channel Speed
ETE Delay

Min Max

SCADA
100 Mbps 11.87 13.06

1 Gbps 1.16 1.28

CB-IED
100 Mbps 0.56 5.40

1 Gbps 0.20 0.45

MU-IED
100 Mbps 9.36 11.62

1 Gbps 0.53 1.13
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4.3. Met-Mast Results

We assumed that the dimension of the Met-mast platform were 10× 8 m. Four data collection units
(DCU) were installed at different levels (90 m, 70 m, 50 m, and 20 m) for collecting the measurement
data. All sensing data were collected at the measurement PC located at the met-mast platform. Each
DCU had a dedicated communication link to the measurement PC to maintain reception of data in
case of any faults in other DCUs. The electric power needed for the measurement equipment and
other devices at the met-mast could be supported from the WF or from photovoltaic panels. Figure 13
shows the received traffic at the measurement PC for pressure, ADCP, humidity, wind speed, and
wind direction, which were 150 bytes/s, 400 bytes, 4 bytes/s, 48 bytes, and 24 bytes/s, respectively.
Figure 14a shows the total received data at the measurement PC of about 638 bytes/s, while the ETE
delay is about 0.54 ms and 0.058 ms for link capacities of 10 Mbps and 100 Mbps, respectively. The
amount of data stored at the measurement PC was about 55 Mb per day, and data was transmitted to
the met-mast server at the local control center for storage.
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In the real system, the data acquisition system at the met-mast uses wireless data transmission
using WCDMA communication to transmit the collected data from the measurement PC to the remote
control center [32]. We assumed that the met-mast was connected to the nearest wind turbine in the
WF (WT16). The real-time measured data were stored at the measurement PC and transmitted to the
local control center (met-mast server) through the WF communication network. The IP ETE delay of
the met-mast data through the WF network is shown in Figure 15.
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4.4. Substation Automation Results

The communication network for the offshore WF substation is shown in Figure 3. The architecture
is based on IEC 61850 with three levels: a process level, bay level, and station level [33]. We assumed
that all MU IEDs and CB IEDs were sending metering values (76,800 bytes/s) and the status of the
breaker (16 bytes/s) to the central P&C unit at the station level on the offshore platform. Three
scenarios were configured with different link capacities of 10, 100 and 1000 Mbps. To validate the
results, we compared the generated amount of traffic from different IEDs with the received traffic
from the server. The server FTP traffic received was about 416 bytes/s (26 CB-IEDs × 16 bytes/s) and
1,920,000 (25 MU-IEDs × 76,800 bytes/s) for the CB-IEDs and MU-IEDs, respectively. Figure 16 shows
the traffic received, which agrees with our calculations.
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Figure 17 shows the average ETE delay for all protection and control information considering link
capacities of 100 Mbps and 1 Gbps. Compared with the timing requirement of the IEEE 1646 standard,
the link capacity of 100 Mbps cannot satisfy the delay requirement owing to a high delay of about
8.5 ms. The link capacity of 1 Gbps can satisfy the protection requirement with a delay less than 1 ms,
as shown in Figure 17.
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It was observed that using 10 Mbps for channel capacity was not sufficient, as the amount of
generated traffic was much higher than the link capacity. Figures 18 and 19 show the worst case
scenario in case of 10 Mbps where data loss and higher delays occur. Table 12 shows the ETE delay of
the MU-IEDs and CB-IEDs for the feeders (F1, F2, and F3), bus, and transformer with link bandwidth of
100 Mbps and 1 Gbps. Figure 20 shows the ETE delay of the MU-IED and CB-IED at the collector bus.
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Table 12. End-to-end delay of the IEDs at different zones.

Zone IED Type ETE Delay

100 Mbps 1 Gbps

Collector Feeder 1
CB-IED 1.31 ms 0.20 ms
MU-IED 14.05 ms 1.35 ms

Collector Feeder 2
CB-IED 1.14 ms 0.18 ms
MU-IED 13.87 ms 1.33 ms

Collector Feeder 3
CB-IED 1.32 ms 0.19 ms
MU-IED 13.96 ms 1.35 ms

Collector Bus
CB-IED 1.00 ms 0.16 ms
MU-IED 13.77 ms 1.32 ms

Substation Transformer
CB1-IED 1.62 ms 0.32 ms
CB2-IED 0.82 ms 0.15 ms
MU-IED 13.62 ms 1.31 ms
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5. Conclusions

In this work, we proposed a framework for the grid integration of a cyber physical wind energy
system (CPWES) that consists of four layers: a wind farm power system layer, data acquisition and
monitoring layer, communication network layer, and application layer. A real WF project (Korean
Southwest –phase 1) was considered as a case study. We developed a communication network
model for the WF based on the OPNET Modeler. The network architecture was modeled based
on IEC 61400-25 and IEC 61850 standards. Different scenarios were configured for evaluating the
communication network performance at different levels, including: data transmission of condition
monitoring system for a standalone wind turbine during different operation modes, communication
network for a real WF consists of 20 wind turbines, data transmission of sensors and measurement
devices installed at the met-mast, and communication network for protection and control devices at
wind turbines, feeders, and offshore substation. The proposed architecture was evaluated with respect
to network topology, link capacity, and end-to-end delay for different applications. Simulation results
indicated the channel capacity of 1 Gbps satisfied the requirement of the IEEE 1646 standard for the
WF system. This work contributes by providing a reference architecture for modeling, simulating, and
evaluating the communication network of a WF and can be used for the design and implementation of
future CPWESs.
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